Compare commits
1 Commits
master
...
unleash_cl
| Author | SHA1 | Date | |
|---|---|---|---|
| e8040e2ba8 |
@ -1,7 +1,7 @@
|
||||
name: Create Blog Article if new notes exist
|
||||
on:
|
||||
schedule:
|
||||
- cron: "15 18 * * *"
|
||||
- cron: "15 3 * * *"
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
|
||||
@ -6,3 +6,4 @@ chromadb
|
||||
langchain-ollama
|
||||
PyJWT
|
||||
dotenv
|
||||
UnleashClient
|
||||
@ -1,17 +1,11 @@
|
||||
import json
|
||||
import os
|
||||
import random
|
||||
import re
|
||||
import string
|
||||
import time
|
||||
from concurrent.futures import ThreadPoolExecutor, TimeoutError
|
||||
|
||||
import os, re, json, random, time, string
|
||||
from ollama import Client
|
||||
import chromadb
|
||||
from langchain_ollama import ChatOllama
|
||||
from ollama import Client
|
||||
|
||||
|
||||
class OllamaGenerator:
|
||||
|
||||
def __init__(self, title: str, content: str, inner_title: str):
|
||||
self.title = title
|
||||
self.inner_title = inner_title
|
||||
@ -20,23 +14,19 @@ class OllamaGenerator:
|
||||
print("In Class")
|
||||
print(os.environ["CONTENT_CREATOR_MODELS"])
|
||||
try:
|
||||
chroma_port = int(os.environ["CHROMA_PORT"])
|
||||
chroma_port = int(os.environ['CHROMA_PORT'])
|
||||
except ValueError as e:
|
||||
raise Exception(f"CHROMA_PORT is not an integer: {e}")
|
||||
self.chroma = chromadb.HttpClient(
|
||||
host=os.environ["CHROMA_HOST"], port=chroma_port
|
||||
)
|
||||
ollama_url = f"{os.environ['OLLAMA_PROTOCOL']}://{os.environ['OLLAMA_HOST']}:{os.environ['OLLAMA_PORT']}"
|
||||
self.chroma = chromadb.HttpClient(host=os.environ['CHROMA_HOST'], port=chroma_port)
|
||||
ollama_url = f"{os.environ["OLLAMA_PROTOCOL"]}://{os.environ["OLLAMA_HOST"]}:{os.environ["OLLAMA_PORT"]}"
|
||||
self.ollama_client = Client(host=ollama_url)
|
||||
self.ollama_model = os.environ["EDITOR_MODEL"]
|
||||
self.embed_model = os.environ["EMBEDDING_MODEL"]
|
||||
self.agent_models = json.loads(os.environ["CONTENT_CREATOR_MODELS"])
|
||||
self.llm = ChatOllama(
|
||||
model=self.ollama_model, temperature=0.6, top_p=0.5
|
||||
) # This is the level head in the room
|
||||
self.llm = ChatOllama(model=self.ollama_model, temperature=0.6, top_p=0.5) #This is the level head in the room
|
||||
self.prompt_inject = f"""
|
||||
You are a journalist, Software Developer and DevOps expert
|
||||
writing a 5000 word draft blog article for other tech enthusiasts.
|
||||
writing a 3000 word draft blog article for other tech enthusiasts.
|
||||
You like to use almost no code examples and prefer to talk
|
||||
in a light comedic tone. You are also Australian
|
||||
As this person write this blog as a markdown document.
|
||||
@ -47,8 +37,8 @@ class OllamaGenerator:
|
||||
"""
|
||||
|
||||
def split_into_chunks(self, text, chunk_size=100):
|
||||
"""Split text into chunks of size chunk_size"""
|
||||
words = re.findall(r"\S+", text)
|
||||
'''Split text into chunks of size chunk_size'''
|
||||
words = re.findall(r'\S+', text)
|
||||
|
||||
chunks = []
|
||||
current_chunk = []
|
||||
@ -59,19 +49,18 @@ class OllamaGenerator:
|
||||
word_count += 1
|
||||
|
||||
if word_count >= chunk_size:
|
||||
chunks.append(" ".join(current_chunk))
|
||||
chunks.append(' '.join(current_chunk))
|
||||
current_chunk = []
|
||||
word_count = 0
|
||||
|
||||
if current_chunk:
|
||||
chunks.append(" ".join(current_chunk))
|
||||
chunks.append(' '.join(current_chunk))
|
||||
|
||||
return chunks
|
||||
|
||||
def generate_draft(self, model) -> str:
|
||||
"""Generate a draft blog post using the specified model"""
|
||||
|
||||
def _generate():
|
||||
'''Generate a draft blog post using the specified model'''
|
||||
try:
|
||||
# the idea behind this is to make the "creativity" random amongst the content creators
|
||||
# contorlling temperature will allow cause the output to allow more "random" connections in sentences
|
||||
# Controlling top_p will tighten or loosen the embedding connections made
|
||||
@ -80,145 +69,60 @@ class OllamaGenerator:
|
||||
temp = random.uniform(0.5, 1.0)
|
||||
top_p = random.uniform(0.4, 0.8)
|
||||
top_k = int(random.uniform(30, 80))
|
||||
agent_llm = ChatOllama(
|
||||
model=model, temperature=temp, top_p=top_p, top_k=top_k
|
||||
)
|
||||
agent_llm = ChatOllama(model=model, temperature=temp, top_p=top_p, top_k=top_k)
|
||||
messages = [
|
||||
(
|
||||
"system",
|
||||
"You are a creative writer specialising in writing about technology",
|
||||
),
|
||||
("human", self.prompt_inject),
|
||||
("system", self.prompt_inject),
|
||||
("human", "make the blog post in a format to be edited easily" )
|
||||
]
|
||||
response = agent_llm.invoke(messages)
|
||||
return (
|
||||
response.text if hasattr(response, "text") else str(response)
|
||||
) # ['message']['content']
|
||||
# self.response = self.ollama_client.chat(model=model,
|
||||
# messages=[
|
||||
# {
|
||||
# 'role': 'user',
|
||||
# 'content': f'{self.prompt_inject}',
|
||||
# },
|
||||
# ])
|
||||
#print ("draft")
|
||||
#print (response)
|
||||
return response.text()#['message']['content']
|
||||
|
||||
# Retry mechanism with 30-minute timeout
|
||||
timeout_seconds = 30 * 60 # 30 minutes
|
||||
max_retries = 3
|
||||
|
||||
for attempt in range(max_retries):
|
||||
try:
|
||||
with ThreadPoolExecutor(max_workers=1) as executor:
|
||||
future = executor.submit(_generate)
|
||||
result = future.result(timeout=timeout_seconds)
|
||||
return result
|
||||
except TimeoutError:
|
||||
print(
|
||||
f"AI call timed out after {timeout_seconds} seconds on attempt {attempt + 1}"
|
||||
)
|
||||
if attempt < max_retries - 1:
|
||||
print("Retrying...")
|
||||
time.sleep(5) # Wait 5 seconds before retrying
|
||||
continue
|
||||
else:
|
||||
raise Exception(
|
||||
f"AI call failed to complete after {max_retries} attempts with {timeout_seconds} second timeouts"
|
||||
)
|
||||
except Exception as e:
|
||||
if attempt < max_retries - 1:
|
||||
print(f"Attempt {attempt + 1} failed with error: {e}. Retrying...")
|
||||
time.sleep(5) # Wait 5 seconds before retrying
|
||||
continue
|
||||
else:
|
||||
raise Exception(
|
||||
f"Failed to generate blog draft after {max_retries} attempts: {e}"
|
||||
)
|
||||
raise Exception(f"Failed to generate blog draft: {e}")
|
||||
|
||||
def get_draft_embeddings(self, draft_chunks):
|
||||
"""Get embeddings for the draft chunks"""
|
||||
try:
|
||||
# Handle empty draft chunks
|
||||
if not draft_chunks:
|
||||
print("Warning: No draft chunks to embed")
|
||||
return []
|
||||
|
||||
embeds = self.ollama_client.embed(
|
||||
model=self.embed_model, input=draft_chunks
|
||||
)
|
||||
embeddings = embeds.get("embeddings", [])
|
||||
|
||||
# Check if embeddings were generated successfully
|
||||
if not embeddings:
|
||||
print("Warning: No embeddings generated")
|
||||
return []
|
||||
|
||||
return embeddings
|
||||
except Exception as e:
|
||||
print(f"Error generating embeddings: {e}")
|
||||
return []
|
||||
'''Get embeddings for the draft chunks'''
|
||||
embeds = self.ollama_client.embed(model=self.embed_model, input=draft_chunks)
|
||||
return embeds.get('embeddings', [])
|
||||
|
||||
def id_generator(self, size=6, chars=string.ascii_uppercase + string.digits):
|
||||
return "".join(random.choice(chars) for _ in range(size))
|
||||
return ''.join(random.choice(chars) for _ in range(size))
|
||||
|
||||
def load_to_vector_db(self):
|
||||
"""Load the generated blog drafts into a vector database"""
|
||||
collection_name = (
|
||||
f"blog_{self.title.lower().replace(' ', '_')}_{self.id_generator()}"
|
||||
)
|
||||
collection = self.chroma.get_or_create_collection(
|
||||
name=collection_name
|
||||
) # , metadata={"hnsw:space": "cosine"})
|
||||
# if any(collection.name == collectionname for collectionname in self.chroma.list_collections()):
|
||||
'''Load the generated blog drafts into a vector database'''
|
||||
collection_name = f"blog_{self.title.lower().replace(" ", "_")}_{self.id_generator()}"
|
||||
collection = self.chroma.get_or_create_collection(name=collection_name)#, metadata={"hnsw:space": "cosine"})
|
||||
#if any(collection.name == collectionname for collectionname in self.chroma.list_collections()):
|
||||
# self.chroma.delete_collection("blog_creator")
|
||||
for model in self.agent_models:
|
||||
print(f"Generating draft from {model} for load into vector database")
|
||||
try:
|
||||
draft_content = self.generate_draft(model)
|
||||
draft_chunks = self.split_into_chunks(draft_content)
|
||||
|
||||
# Skip if no content was generated
|
||||
if not draft_chunks or all(
|
||||
chunk.strip() == "" for chunk in draft_chunks
|
||||
):
|
||||
print(f"Skipping {model} - no content generated")
|
||||
continue
|
||||
|
||||
print(f"generating embeds for {model}")
|
||||
print (f"Generating draft from {model} for load into vector database")
|
||||
draft_chunks = self.split_into_chunks(self.generate_draft(model))
|
||||
print(f"generating embeds")
|
||||
embeds = self.get_draft_embeddings(draft_chunks)
|
||||
|
||||
# Skip if no embeddings were generated
|
||||
if not embeds:
|
||||
print(f"Skipping {model} - no embeddings generated")
|
||||
continue
|
||||
|
||||
# Ensure we have the same number of embeddings as chunks
|
||||
if len(embeds) != len(draft_chunks):
|
||||
print(
|
||||
f"Warning: Mismatch between chunks ({len(draft_chunks)}) and embeddings ({len(embeds)}) for {model}"
|
||||
)
|
||||
# Truncate or pad to match
|
||||
min_length = min(len(embeds), len(draft_chunks))
|
||||
draft_chunks = draft_chunks[:min_length]
|
||||
embeds = embeds[:min_length]
|
||||
if min_length == 0:
|
||||
print(f"Skipping {model} - no valid content/embeddings pairs")
|
||||
continue
|
||||
|
||||
ids = [model + str(i) for i in range(len(draft_chunks))]
|
||||
chunknumber = list(range(len(draft_chunks)))
|
||||
metadata = [{"model_agent": model} for index in chunknumber]
|
||||
print(f"loading into collection for {model}")
|
||||
collection.add(
|
||||
documents=draft_chunks,
|
||||
embeddings=embeds,
|
||||
ids=ids,
|
||||
metadatas=metadata,
|
||||
)
|
||||
except Exception as e:
|
||||
print(f"Error processing model {model}: {e}")
|
||||
# Continue with other models rather than failing completely
|
||||
continue
|
||||
print(f'loading into collection')
|
||||
collection.add(documents=draft_chunks, embeddings=embeds, ids=ids, metadatas=metadata)
|
||||
|
||||
return collection
|
||||
|
||||
|
||||
def generate_markdown(self) -> str:
|
||||
prompt_human = f"""
|
||||
|
||||
prompt_system = f"""
|
||||
You are an editor taking information from {len(self.agent_models)} Software
|
||||
Developers and Data experts
|
||||
writing a 5000 word blog article. You like when they use almost no code examples.
|
||||
writing a 3000 word blog article. You like when they use almost no code examples.
|
||||
You are also Australian. The content may have light comedic elements,
|
||||
you are more professional and will attempt to tone these down
|
||||
As this person produce the final version of this blog as a markdown document
|
||||
@ -229,104 +133,29 @@ class OllamaGenerator:
|
||||
The basis for the content of the blog is:
|
||||
<blog>{self.content}</blog>
|
||||
"""
|
||||
|
||||
def _generate_final_document():
|
||||
try:
|
||||
embed_result = self.ollama_client.embed(
|
||||
model=self.embed_model, input=prompt_human
|
||||
)
|
||||
query_embed = embed_result.get("embeddings", [])
|
||||
if not query_embed:
|
||||
print(
|
||||
"Warning: Failed to generate query embeddings, using empty list"
|
||||
)
|
||||
query_embed = [[]] # Use a single empty embedding as fallback
|
||||
except Exception as e:
|
||||
print(f"Error generating query embeddings: {e}")
|
||||
# Generate empty embeddings as fallback
|
||||
query_embed = [[]] # Use a single empty embedding as fallback
|
||||
|
||||
query_embed = self.ollama_client.embed(model=self.embed_model, input=prompt_system)['embeddings']
|
||||
collection = self.load_to_vector_db()
|
||||
|
||||
# Try to query the collection, with fallback for empty collections
|
||||
try:
|
||||
collection_query = collection.query(
|
||||
query_embeddings=query_embed, n_results=100
|
||||
)
|
||||
collection_query = collection.query(query_embeddings=query_embed, n_results=100)
|
||||
print("Showing pertinent info from drafts used in final edited edition")
|
||||
|
||||
# Get documents with error handling
|
||||
query_result = collection.query(
|
||||
query_embeddings=query_embed, n_results=100
|
||||
)
|
||||
documents = query_result.get("documents", [])
|
||||
|
||||
if documents and len(documents) > 0 and len(documents[0]) > 0:
|
||||
pertinent_draft_info = "\n\n".join(documents[0])
|
||||
else:
|
||||
print("Warning: No relevant documents found in collection")
|
||||
pertinent_draft_info = "No relevant information found in drafts."
|
||||
|
||||
except Exception as query_error:
|
||||
print(f"Error querying collection: {query_error}")
|
||||
pertinent_draft_info = (
|
||||
"No relevant information found in drafts due to query error."
|
||||
)
|
||||
# print(pertinent_draft_info)
|
||||
prompt_system = f"""Generate the final, 5000 word, draft of the blog using this information from the drafts: <context>{pertinent_draft_info}</context>
|
||||
pertinent_draft_info = '\n\n'.join(collection.query(query_embeddings=query_embed, n_results=100)['documents'][0])
|
||||
#print(pertinent_draft_info)
|
||||
prompt_human = f"""Generate the final, 3000 word, draft of the blog using this information from the drafts: <context>{pertinent_draft_info}</context>
|
||||
- Only output in markdown, do not wrap in markdown tags, Only provide the draft not a commentary on the drafts in the context
|
||||
"""
|
||||
print("Generating final document")
|
||||
messages = [
|
||||
("system", prompt_system),
|
||||
("human", prompt_human),
|
||||
]
|
||||
response = self.llm.invoke(messages)
|
||||
return response.text if hasattr(response, "text") else str(response)
|
||||
|
||||
try:
|
||||
# Retry mechanism with 30-minute timeout
|
||||
timeout_seconds = 30 * 60 # 30 minutes
|
||||
max_retries = 3
|
||||
|
||||
for attempt in range(max_retries):
|
||||
try:
|
||||
with ThreadPoolExecutor(max_workers=1) as executor:
|
||||
future = executor.submit(_generate_final_document)
|
||||
self.response = future.result(timeout=timeout_seconds)
|
||||
break # Success, exit the retry loop
|
||||
except TimeoutError:
|
||||
print(
|
||||
f"AI call timed out after {timeout_seconds} seconds on attempt {attempt + 1}"
|
||||
)
|
||||
if attempt < max_retries - 1:
|
||||
print("Retrying...")
|
||||
time.sleep(5) # Wait 5 seconds before retrying
|
||||
continue
|
||||
else:
|
||||
raise Exception(
|
||||
f"AI call failed to complete after {max_retries} attempts with {timeout_seconds} second timeouts"
|
||||
)
|
||||
except Exception as e:
|
||||
if attempt < max_retries - 1:
|
||||
print(
|
||||
f"Attempt {attempt + 1} failed with error: {e}. Retrying..."
|
||||
)
|
||||
time.sleep(5) # Wait 5 seconds before retrying
|
||||
continue
|
||||
else:
|
||||
raise Exception(
|
||||
f"Failed to generate markdown after {max_retries} attempts: {e}"
|
||||
)
|
||||
|
||||
messages = [("system", prompt_system), ("human", prompt_human),]
|
||||
self.response = self.llm.invoke(messages).text()
|
||||
# self.response = self.ollama_client.chat(model=self.ollama_model,
|
||||
# messages=[
|
||||
# {
|
||||
# 'role': 'user',
|
||||
# 'content': f'{prompt_enhanced}',
|
||||
# },
|
||||
# ])
|
||||
# print ("Markdown Generated")
|
||||
# print (self.response)
|
||||
return self.response # ['message']['content']
|
||||
#print ("Markdown Generated")
|
||||
#print (self.response)
|
||||
return self.response#['message']['content']
|
||||
|
||||
except Exception as e:
|
||||
raise Exception(f"Failed to generate markdown: {e}")
|
||||
@ -336,43 +165,6 @@ class OllamaGenerator:
|
||||
f.write(self.generate_markdown())
|
||||
|
||||
def generate_system_message(self, prompt_system, prompt_human):
|
||||
def _generate():
|
||||
messages = [
|
||||
("system", prompt_system),
|
||||
("human", prompt_human),
|
||||
]
|
||||
response = self.llm.invoke(messages)
|
||||
ai_message = response.text if hasattr(response, "text") else str(response)
|
||||
messages = [("system", prompt_system), ("human", prompt_human),]
|
||||
ai_message = self.llm.invoke(messages).text()
|
||||
return ai_message
|
||||
|
||||
# Retry mechanism with 30-minute timeout
|
||||
timeout_seconds = 30 * 60 # 30 minutes
|
||||
max_retries = 3
|
||||
|
||||
for attempt in range(max_retries):
|
||||
try:
|
||||
with ThreadPoolExecutor(max_workers=1) as executor:
|
||||
future = executor.submit(_generate)
|
||||
result = future.result(timeout=timeout_seconds)
|
||||
return result
|
||||
except TimeoutError:
|
||||
print(
|
||||
f"AI call timed out after {timeout_seconds} seconds on attempt {attempt + 1}"
|
||||
)
|
||||
if attempt < max_retries - 1:
|
||||
print("Retrying...")
|
||||
time.sleep(5) # Wait 5 seconds before retrying
|
||||
continue
|
||||
else:
|
||||
raise Exception(
|
||||
f"AI call failed to complete after {max_retries} attempts with {timeout_seconds} second timeouts"
|
||||
)
|
||||
except Exception as e:
|
||||
if attempt < max_retries - 1:
|
||||
print(f"Attempt {attempt + 1} failed with error: {e}. Retrying...")
|
||||
time.sleep(5) # Wait 5 seconds before retrying
|
||||
continue
|
||||
else:
|
||||
raise Exception(
|
||||
f"Failed to generate system message after {max_retries} attempts: {e}"
|
||||
)
|
||||
|
||||
@ -1,11 +1,8 @@
|
||||
import os
|
||||
import shutil
|
||||
import os, shutil
|
||||
from urllib.parse import quote
|
||||
|
||||
from git import Repo
|
||||
from git.exc import GitCommandError
|
||||
|
||||
|
||||
class GitRepository:
|
||||
# This is designed to be transitory it will desctruvtively create the repo at repo_path
|
||||
# if you have uncommited changes you can kiss them goodbye!
|
||||
@ -14,8 +11,8 @@ class GitRepository:
|
||||
def __init__(self, repo_path, username=None, password=None):
|
||||
git_protocol = os.environ["GIT_PROTOCOL"]
|
||||
git_remote = os.environ["GIT_REMOTE"]
|
||||
# if username is not set we don't need parse to the url
|
||||
if username == None or password == None:
|
||||
#if username is not set we don't need parse to the url
|
||||
if username==None or password == None:
|
||||
remote = f"{git_protocol}://{git_remote}"
|
||||
else:
|
||||
# of course if it is we need to parse and escape it so that it
|
||||
@ -42,7 +39,7 @@ class GitRepository:
|
||||
print(f"Cloning failed: {e}")
|
||||
return False
|
||||
|
||||
def fetch(self, remote_name="origin", ref_name="main"):
|
||||
def fetch(self, remote_name='origin', ref_name='main'):
|
||||
"""Fetch updates from a remote repository with authentication"""
|
||||
try:
|
||||
self.repo.remotes[remote_name].fetch(ref_name=ref_name)
|
||||
@ -51,7 +48,7 @@ class GitRepository:
|
||||
print(f"Fetching failed: {e}")
|
||||
return False
|
||||
|
||||
def pull(self, remote_name="origin", ref_name="main"):
|
||||
def pull(self, remote_name='origin', ref_name='main'):
|
||||
"""Pull updates from a remote repository with authentication"""
|
||||
print("Pulling Latest Updates (if any)")
|
||||
try:
|
||||
@ -65,6 +62,18 @@ class GitRepository:
|
||||
"""List all branches in the repository"""
|
||||
return [branch.name for branch in self.repo.branches]
|
||||
|
||||
|
||||
def create_and_switch_branch(self, branch_name, remote_name='origin', ref_name='main'):
|
||||
"""Create a new branch in the repository with authentication."""
|
||||
try:
|
||||
print(f"Creating Branch {branch_name}")
|
||||
# Use the same remote and ref as before
|
||||
self.repo.git.branch(branch_name)
|
||||
except GitCommandError:
|
||||
print("Branch already exists switching")
|
||||
# ensure remote commits are pulled into local
|
||||
self.repo.git.checkout(branch_name)
|
||||
|
||||
def add_and_commit(self, message=None):
|
||||
"""Add and commit changes to the repository."""
|
||||
try:
|
||||
@ -82,27 +91,12 @@ class GitRepository:
|
||||
print(f"Commit failed: {e}")
|
||||
return False
|
||||
|
||||
def create_copy_commit_push(self, file_path, title, commit_message):
|
||||
# Check if branch exists remotely
|
||||
remote_branches = [
|
||||
ref.name.split("/")[-1] for ref in self.repo.remotes.origin.refs
|
||||
]
|
||||
def create_copy_commit_push(self, file_path, title, commit_messge):
|
||||
self.create_and_switch_branch(title)
|
||||
|
||||
if title in remote_branches:
|
||||
# Branch exists remotely, checkout and pull
|
||||
self.repo.git.checkout(title)
|
||||
self.pull(ref_name=title)
|
||||
else:
|
||||
# New branch, create from main
|
||||
self.repo.git.checkout("-b", title, "origin/main")
|
||||
shutil.copy(f"{file_path}", f"{self.repo_path}src/content/")
|
||||
|
||||
# Ensure destination directory exists
|
||||
dest_dir = f"{self.repo_path}src/content/"
|
||||
os.makedirs(dest_dir, exist_ok=True)
|
||||
self.add_and_commit(f"'{commit_messge}'")
|
||||
|
||||
# Copy file
|
||||
shutil.copy(f"{file_path}", dest_dir)
|
||||
|
||||
# Commit and push
|
||||
self.add_and_commit(commit_message)
|
||||
self.repo.git.push("--set-upstream", "origin", title)
|
||||
self.repo.git.push()
|
||||
|
||||
13
unleash_client.py
Normal file
13
unleash_client.py
Normal file
@ -0,0 +1,13 @@
|
||||
from UnleashClient import UnleashClient
|
||||
import asyncio
|
||||
|
||||
client = UnleashClient(
|
||||
url="http://192.168.178.160:30007/api/",
|
||||
app_name="unleash-onboarding-python",
|
||||
custom_headers={'Authorization': 'default:development.6uQIie4GdslTxgYAWVu35sRBjjBMPRRKw6vBj6mFsgFfvdXuy73GgLQg'}) # in production use environment variable
|
||||
|
||||
client.initialize_client()
|
||||
|
||||
while True:
|
||||
print(client.is_enabled("crew_ai_integration"))
|
||||
asyncio.run(asyncio.sleep(1))
|
||||
Loading…
x
Reference in New Issue
Block a user