# Matrix AI Integrations with baibot I've been experimenting with **baibot** (), a locally deployable bot for integrating Large Language Models (LLMs) into Matrix chatrooms. This setup allows me to interact with LLMs directly within my own Matrix server, enhancing both personal and community communication. ### Key Setup Steps 1. **Configuration**: - Use the sample provider config (e.g., ) to define LLM models, prompts, temperatures, and token limits. 2. **Kubernetes Deployment**: - Deploy using a custom `Deployment.yaml` and PersistentVolumeClaim (PVC) for storage persistence. - Example `Deployment.yaml`: ```yaml apiVersion: apps/v1 kind: Deployment metadata: ... spec: template: spec: containers: - env: - name: BAIBOT_PERSISTENCE_DATA_DIR_PATH value: /data image: ghcr.io/etkecc/baibot:v1.7.4 volumeMounts: - mountPath: /app/config.yml subPath: config.yml - mountPath: /data subPath: data ``` - PVC setup (`pvc-ridgway-bot.yaml`): ```yaml apiVersion: v1 kind: PersistentVolumeClaim metadata: name: ridgway-bot-storage spec: storageClassName: longhorn accessModes: - ReadWriteMany resources: requests: storage: 500Mi ``` 3. **Kubernetes Deployment Script**: ```sh kubectl delete namespace ridgway-bot kubectl create namespace ridgway-bot kubectl -n ridgway-bot create cm ridgway-bot --from-file=config.yml=./config.yml kubectl apply -f pvc-ridgway-bot.yaml kubectl apply -f Deployment.yaml sleep 90 && kubectl cp data/* $(kubectl get pods -o custom-columns=":metadata.name" -n ridgway_bot | head -n1):/data ``` 4. **Post-Deployment**: - Connect the bot to Matrix rooms via Element’s admin interface. - Fine-tune configurations (e.g., temperature, prompts) for specific rooms. ### Example Configurations #### Ollama Integration: ```yaml base_url: http://192.168.178.45:11434/v1 text_generation: model_id: gemma3:latest prompt: 'You are a lighthearted bot...' temperature: 0.9 max_response_tokens: 4096 max_context_tokens: 128000 ``` #### Openwebui Integration (RAG): ```yaml base_url: https://ai.aridgwayweb.com/api/ api_key: text_generation: model_id: andrew-knowledge-base prompt: 'Your name is Rodergast...' temperature: 0.7 max_response_tokens: 4096 max_context_tokens: 128000 ``` ### Benefits of Local Deployment - **Full Control**: Data privacy and compliance without third-party dependencies. - **Scalability**: Kubernetes enables easy scaling as needed. - **Flexibility**: Combine with services like openwebui for rich contextual responses. ### Future Plans Next, I aim to integrate baibot with Home Assistant for alarm notifications. However, current hardware limitations (a 10-year-old PC) may necessitate a more powerful setup in the future. Stay tuned for updates! # Conclusion baibot enhances Matrix interactions by enabling direct LLM integration, offering seamless control over room-specific behaviors. Combining local deployment with RAG capabilities via openwebui demonstrates DIY tech stack potential. Explore further and share your experiences! 🚀🤖