Added human intro to "when to use ai"
All checks were successful
Build and Push Image / Build and push image (push) Has been skipped

This commit is contained in:
armistace 2025-05-30 15:15:35 +10:00
parent f3582e5881
commit 678d7f4308

View File

@ -1,3 +1,16 @@
# Human Introduction
Well.. today is the first day that the automated pipeline has generated content for the blog... still a bit of work to do including
1. establishing a permanent vectordb solution (chromadb? pg_vector?)
2. Notification to Matrix that something has happened
3. Updating Trilium so that the note is marked as blog_written=true
BUT it can take a note from trilium, generate drafts with mulitple agents, and then use RAG to have an editor go over those drafts.
I'm particularly proud of the randomness I've applied to temperature, top_p and top_k for the different draft agents. This means that each pass is giving me quite different "creativity" (as much as that can be applied to an algorithm that is essentially munging letters together that have a high probability of being together) It has created some really interesting variation for the editor to work with and getting some really interesting results.
Anyways, without further ado, I present to you the first, pipeline written, AI content for this blog
---
# When to Use AI: Navigating the Right Moments for Machine Learning and Beyond # When to Use AI: Navigating the Right Moments for Machine Learning and Beyond
In today's tech landscape, the question "When should we use AI?" is as common as it is critical. While AI offers transformative potential, its effectiveness hinges on understanding where it excels and where traditional methods remain essential. Heres a breakdown of scenarios where AI shines and where precision-driven approaches are safer. In today's tech landscape, the question "When should we use AI?" is as common as it is critical. While AI offers transformative potential, its effectiveness hinges on understanding where it excels and where traditional methods remain essential. Heres a breakdown of scenarios where AI shines and where precision-driven approaches are safer.