'LLM Matrix bot integration deployed'

This commit is contained in:
Blog Creator 2025-06-27 06:22:56 +00:00
parent e3bad5a747
commit 24b5477e4f

View File

@ -0,0 +1,107 @@
# Matrix AI Integrations with baibot
I've been experimenting with **baibot** (<https://github.com/etkecc/baibot>), a locally deployable bot for integrating Large Language Models (LLMs) into Matrix chatrooms. This setup allows me to interact with LLMs directly within my own Matrix server, enhancing both personal and community communication.
### Key Setup Steps
1. **Configuration**:
- Use the sample provider config (e.g., <https://github.com/etkecc/baibot/blob/main/docs/sample-provider-configs/ollama.yml>) to define LLM models, prompts, temperatures, and token limits.
2. **Kubernetes Deployment**:
- Deploy using a custom `Deployment.yaml` and PersistentVolumeClaim (PVC) for storage persistence.
- Example `Deployment.yaml`:
```yaml
apiVersion: apps/v1
kind: Deployment
metadata:
...
spec:
template:
spec:
containers:
- env:
- name: BAIBOT_PERSISTENCE_DATA_DIR_PATH
value: /data
image: ghcr.io/etkecc/baibot:v1.7.4
volumeMounts:
- mountPath: /app/config.yml
subPath: config.yml
- mountPath: /data
subPath: data
```
- PVC setup (`pvc-ridgway-bot.yaml`):
```yaml
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: ridgway-bot-storage
spec:
storageClassName: longhorn
accessModes:
- ReadWriteMany
resources:
requests:
storage: 500Mi
```
3. **Kubernetes Deployment Script**:
```sh
kubectl delete namespace ridgway-bot
kubectl create namespace ridgway-bot
kubectl -n ridgway-bot create cm ridgway-bot --from-file=config.yml=./config.yml
kubectl apply -f pvc-ridgway-bot.yaml
kubectl apply -f Deployment.yaml
sleep 90 && kubectl cp data/* $(kubectl get pods -o custom-columns=":metadata.name" -n ridgway_bot | head -n1):/data
```
4. **Post-Deployment**:
- Connect the bot to Matrix rooms via Elements admin interface.
- Fine-tune configurations (e.g., temperature, prompts) for specific rooms.
### Example Configurations
#### Ollama Integration:
```yaml
base_url: http://192.168.178.45:11434/v1
text_generation:
model_id: gemma3:latest
prompt: 'You are a lighthearted bot...'
temperature: 0.9
max_response_tokens: 4096
max_context_tokens: 128000
```
#### Openwebui Integration (RAG):
```yaml
base_url: https://ai.aridgwayweb.com/api/
api_key: <my-openwebui-api-key>
text_generation:
model_id: andrew-knowledge-base
prompt: 'Your name is Rodergast...'
temperature: 0.7
max_response_tokens: 4096
max_context_tokens: 128000
```
### Benefits of Local Deployment
- **Full Control**: Data privacy and compliance without third-party dependencies.
- **Scalability**: Kubernetes enables easy scaling as needed.
- **Flexibility**: Combine with services like openwebui for rich contextual responses.
### Future Plans
Next, I aim to integrate baibot with Home Assistant for alarm notifications. However, current hardware limitations (a 10-year-old PC) may necessitate a more powerful setup in the future.
Stay tuned for updates!
# Conclusion
baibot enhances Matrix interactions by enabling direct LLM integration, offering seamless control over room-specific behaviors. Combining local deployment with RAG capabilities via openwebui demonstrates DIY tech stack potential.
Explore further and share your experiences! 🚀🤖